Skip to main content

Active Crown Fire Behavior

  1. Definitions
  2. Active Crown Fire Rate of Spread and Flame Length
  3. Estimating Active Crown Fire Spread Rate With Surface Shrub Models

Definitions

Crown Fraction Burned (CFB) is a theoretical concept that is used to model and classify crown fire. It may be observable after the fact in burn severity assessments.

Image
This graph compares Crown Fire spread rates utilizing several surface shrub fuel models and compares them to the Rothermel Crown Fire Spread Model.

Passive Crown Fire (Intermittent or Persistent Torching) occurs where surface fire intensity is sufficient to ignite tree crowns, individually or in groups, but winds are not sufficient to support propagation from tree to tree. CFB between 0.10 and 0.90.

Active Crown Fire occurs where surface and crown fire energy are linked. Surface intensity is sufficient to ignite tree crowns, and fire spread and intensity in the tree crowns encourages surface fire spread and intensity. CFB at least 0.90.

Independent Crown Fire occurs (rarely) where tree crown loading and flammability is sufficient to carry fire without surface fire contribution under ambient weather and wind conditions. CFB generally approaching 1.0.

Isolated Tree Torching should not be considered crown fire, though it may be an indicator of potential later in the burn period. It usually occurs due to anomalies in surface fire behavior due to jackpots of surface fuel, isolated terrain features, or brief wind gusts. CFB is less than 0.10.

Return to Top

Active Crown Fire Rate of Spread and Flame Length

After the 1988 fire season, Rothermel (1991) developed an empirical model for estimating crown fire spread rates and fireline intensities, referencing several fires from the Rocky Mountains in its development. Based on fire behavior in Fuel Model 10 (FB10), the calculation is essentially:

ROSActiveCrownFire = 3.34*ROSFuelModel10

(Assuming MFWS = 20ft windspeed*0.4)

These graphs, using season, slope, and 20ft windspeed, provide rough estimates of active crown fire spread rates using the Rothermel Crown Fire Spread model.

No Slope

Image
Using the season of the year and the 20-ft windspeed, this graph helps the analyst estimate crown fire spread rate for fires on generally level or low slope landscapes.

50% Slope

Image
Using the season of the year and the 20-ft windspeed, this graph helps the analyst estimate crown fire spread rate for fires on steep slopes of approximately 50%.

100% Slope

Image
Using the season of the year and the 20-ft windspeed, this graph helps the analyst estimate crown fire spread rate for fires on steep slopes of approximately 100%.

Return to Top

Estimating Active Crown Fire Spread Rate with Surface Shrub Models

In fireline assessments, it may be necessary to make quick estimates of crown fire spread based on simple inputs.  Simple lookup tables or graphs like those above provide rough estimates. Anderson (1982), when describing the original 13 surface fuel models, identified several shrub models as representative of crown fire behavior in several classic types:

  • FM4 (Chaparral) for New Jersey Pine Barrens and Lake States Jack Pine.
  • FM6 (Dormant Brush) for Alaska Spruce Taiga.
  • FM7 (Southern Rough) for Alaska Black Spruce/Shrub Communities.

Bishop (2010), in developing the Fireline Assessment Method (FLAME), averaged spread rates for fuel models 5, 6, and 7 to estimate crown fire spread.

Fuel Models sh5 (145) and sh7 (147) have been used in the same manner in spatial modeling in different situations.

This graphic demonstrates the similarity in spread rates produced by the Rothermel Crown Fire Spread Rate (crown) and several surface shrub fuel models.  

Image
This graph compares Crown Fire spread rates utilizing several surface shrub fuel models and compares them to the Rothermel Crown Fire Spread Model.

Caution: Using surface fuel models to represent crown fire behavior may not accurately provide for the calculation of Crown Fraction Burned (CFB) or the modeling of increasing spread due to passive crown fire (torching and spotting) behavior in spatial fire analyses. It may also over-estimate fire spread and intensity under moderated environmental conditions.

NWCG Latest Announcements

NWCG Equipment Technology Committee Releases Safety Warning: 24-001 Stihl Chainsaw Toolless Fuel Cap Spill Prevention

Date: November 14, 2024
Contact: Equipment Technology Committee

The Equipment Technology Committee (ETC) has released Safety Warning: 24-001 Stihl Chainsaw Toolless Fuel Cap Spill Prevention. Misaligned toolless fuel caps on Stihl chainsaws have led to recurring fuel spillage, fuel ignition, and burn injuries during wildland fire management operations.

This Safety Warning is intended to highlight the details and recommended procedures for the installation of a Stihl chainsaw toolless fuel cap, as well as how to identify and correct a misaligned, damaged, or broken fuel cap to help prevent fuel spillage.

References:

NWCG Safety Warning: 24-001 Stihl Chainsaw Toolless Fuel Cap Spill Prevention

Advertencia de equipos 24-001: Prevención de derrames de la tapa de combustible sin herramientas de la motosierra Stihl

NWCG Alerts

The Incident Position Standards and Next Generation Position Task Book are now available for Equipment Time Recorder (EQTR)

Date: November 13, 2024
Contact: Incident Business Committee

NWCG is excited to announce that the NWCG Incident Position Standards for Equipment Time Recorder, PMS 350-51 and NWCG Position Task Book for Equipment Time Recorder (EQTR), PMS 311-51 are now available.

The Performance Support Package, which for EQTR, includes the Incident Position Standards and Next Generation Position Task Book were developed through the Incident Performance and Training Modernization (IPTM) effort. The Performance Support Package will support trainees, those qualified in the position, and evaluators.

References:

NWCG Equipment Time Recorder Position Page

NWCG Incident Position Standards for Equipment Time Recorder, PMS 350-51

NWCG Position Task Book for Equipment Time Recorder (EQTR), PMS 311-51

The Incident Position Standards and Next Generation Position Task Book are now available for Personnel Time Recorder (PTRC)

Date: November 13, 2024
Contact: Incident Business Committee

NWCG is excited to announce that the NWCG Incident Position Standards for Personnel Time Recorder, PMS 350-53 and NWCG Position Task Book for Personnel Time Recorder (PTRC), PMS 311-53 are now available.

The Performance Support Package, which for PTRC, includes the Incident Position Standards and Next Generation Position Task Book were developed through the Incident Performance and Training Modernization (IPTM) effort. The Performance Support Package will support trainees, those qualified in the position, and evaluators.

References:

NWCG Personnel Time Recorder Position Page

NWCG Incident Position Standards for Personnel Time Recorder, PMS 350-53

NWCG Position Task Book for Personnel Time Recorder (PTRC), PMS 311-53

NWCG Risk Management Committee Releases Safety Bulletin: 24-001 Use of Respirators on Wildland Fires

Date: November 7, 2024
Contact: Risk Management Committee

The Risk Management Committee (RMC) has released Safety Bulletin: 24-001 Use of Respirators on Wildland Fires. As wildland fire respirators are available through several established vendors, wildland fire personnel need to understand regulations and limitations of respirator use in the workplace.

Safety Bulletin 24-001 outlines the following topics regarding respirator use for wildland fires:

  • Requirements for Respirator Use
  • Voluntary Respirator Use
  • Current Respirator Options
  • Unknown Risks of Respirator Use

This bulletin also provides mitigation recommendations to help reduce smoke exposure for wildland firefighting efforts.

References:

NWCG Safety Bulletin: 24-001 Use of Respirators on Wildland Fires

NWCG Smoke Management Guide for Prescribed Fire, PMS 420-3

VIDEO: Protecting Wildfire Personnel from Smoke - How Incident Management Teams Address Smokes Risks

VIDEO: Smoke, Knowing the Risks