Skip to main content

Surface Fire Behavior Nomograms and Nomographs

  1. Instructions for Nomograph Use (Scott 2007)
  2. Instructions for Nomogram Use (Rothermel 1983)

Instructions for Nomograph Use (Scott 2007)

Reference: Scott, Joe H. 2007. Nomographs for estimating surface fire behavior characteristics. Gen. Tech. Rep. RMRS-GTR-192. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 119 p

Each fuel model includes a duplicate set of effective windspeed protractor and fire behavior nomograph, one for low windspeeds and one for high windspeeds. Select the one with applicable windspeeds.

Example Nomograph

Image
Example Nomograph. Updated in 2007 to include versions for all 53 models.

Inputs Required:

  1. Fuel Model.
  2. Midflame Windspeed and direction, azimuth clockwise from upslope.
  3. Slope percent.
  4. Dead and Live Fuel Moistures.

Determine Effective Windspeed (EWS) - Low or High

Use the left side nomograph, shown above, if the situation includes cross slope winds.

  1. Plot the slope vector (a) in the upslope direction to the hash representing the slope percent. Interpolate if necessary.
  2. Plot the wind vector (b) using the concentric circle to for the input windspeed and the azimuth above for direction.
  3. Plot parallel vectors (c and d) and resultant vector (e). Read resulting windspeed (e) and direction (f).

Estimate Head Fire Rate of Spread and Flame Length

If the fuel model includes a live fuel component, use the nomograph that references the appropriate live fuel moisture. Otherwise, there is only one nomograph, shown on right.

  1. Using the input dead fuel moisture, draw vertical line (g) to the estimated EWS curve.
  2. Read the flame length from the embedded curves at the intersection (j). Interpolate between lines if necessary.
  3. Draw horizontal line (h) to the left axis and read the Rate of Spread at intersection (i).

Return to Top

Instructions for Nomogram Use (Rothermel 1983)

Reference: Rothermel, Richard C. How to predict the spread and intensity of forest and range fires. Gen. Tech. Rep. INT-143. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest, and Range Experiment Station; 1983. 1 61 p. 

Download Nomograms Here 

Unlike the newer nomographs, the original surface fire behavior nomograms have several limitations:

  • These nomograms are only available for the original 13 fuel models.
  • They are intended for use with wind blowing within ±30 degrees of upslope. Use in vectoring is possible, though it is not outlined here.

Inputs Required

  1. Fuel model.
  2. Midflame windspeed.
  3. Percent slope.
  4. Dead fuel moisture (use 1-hr).
  5. Live fuel moisture for fuel models 2, 4, 5, 7, & 10.

Select the Appropriate Windspeed (Low/High) Nomogram

The numbered steps below correspond to the labeled lines on the example nomograms.

Part I: Estimate Effective Windspeed (For All Fuel Models)

  1. In the lower left quadrant, draw a vertical line from percent slope value to intersect midflame windspeed curve. Draw a horizontal line to the left axis and read effective windspeed.
  2. In the lower right quadrant, identify and highlight the appropriate effective windspeed line. Interpolate by adding a line for effective windspeed from step1 above if it is between existing lines.

Part II: Fuel Moisture

For FM 1, 3, 6, 8, 9, 11, 12, 13 with only dead fuel.

  1. In the upper left quadrant of the nomogram, identify and highlight the appropriate dead fuel moisture line based on the input value provided. Interpolate by drawing a new line between existing lines if necessary.

For FM 2, 4, 5, 7, 10 with live fuel.

  • Using the two upper quadrants, locate the appropriate dead fuel moisture value on the two outer vertical axes (highlighted). Connect with a horizontal line.
  • Connect the point where the horizontal line intersects the live fuel curve in the upper left quadrant to the origin point, creating a straight line.
  • Using the input live fuel moisture provided, identify and highlight the appropriate S-curve in the upper right quadrant. Interpolate by adding a new line between existing lines if necessary.

At this point, turning lines have been identified in all 4 quadrants (including the S-curve in the upper right quadrant and the default corner to corner line in the lower left). The nomogram is prepared for Part III.

Part III: Estimating Fire Behavior

With the preparations in parts I and II, turning lines have been highlighted in the lower right quadrant and the upper left quadrant, as well as the appropriate S-curve in the upper right quadrant for fuel models with live fuels.

  • Begin in the upper right quadrant. Draw a horizontal line from dead fuel moisture to the highlighted fuel moisture turning line (s-curve).
  • From the intersection, draw a vertical line down to the turning line in the lower right quadrant (highlighted in step 2).
  1. From the intersection with the turning line in the lower right, draw a horizontal line to the turning line in the lower left quadrant.
  2. From the intersection with the turning line in the lower left quadrant, draw a vertical line up to the turning line in the upper left quadrant (highlighted in step 3).
  3. From the intersection with the turning line in the upper left quadrant, draw a horizontal line to the right until it intersects the vertical line drawn in step 4.

Part IV: Reading Fire Behavior Outputs

Read Heat Per Unit Area where the vertical line from step 2 intersects its axis in the upper right quadrant.

  • In the first example (Dead Fuel Only), the Heat Per Unit Area is estimated at approximately 750 BTU/sq. ft.
  • In the second example (Dead & Live Fuels), the Heat Per Unit Area is estimated at approximately 215 BTU/sq. ft.

Read Rate of Spread where the horizontal line from step 5 intersects its axis in the upper right quadrant.

  • In the first example (Dead Fuel Only), the Rate of Spread is estimated at approximately 7 chains per hour.
  • In the second example (Dead & Live Fuels), the Rate of Spread is also estimated at approximately 7 chains per hour.

Read Flame Length and Fireline Intensity at the final intersection produced in step 5.

  • In the first example (Dead Fuel Only), the intersection between lines 4 and 7 comes between the Flame Length/Fireline Intensity contour lines 3/60 and 4/100. It could be estimated as 4 ft or 90 BTU/ft/sec.
  • In the second example (Dead & Live Fuels), the intersection between lines 4 and 7 comes between the Flame Length/Fireline Intensity contour lines 2/25 and 3/60. It could be estimated as 2 ft or 30 BTU/ft/sec.

Example Nomogram for Dead Fuel Only (Fuel Models 1, 3, 6, 8, 9, 11, 12, 13)

Image
Example Surface Fire Behavior Nomogram for fuel models with dead fuels only.

Example Nomogram Using Dead & Live Fuels (Fuel Models 2, 4, 5, 7, 100)

Image
Example Surface Fire Behavior Nomogram for fuel models with both live and dead fuels.

NWCG Latest Announcements

Updated NWCG Standards for Fire Unmanned Aircraft Systems Operations, PMS 515

Date: April 23, 2025
Questions?  Please contact:
Interagency Fire Unmanned Aircraft Systems Subcommittee

The NWCG Standards for Fire Unmanned Aircraft Systems Operations, PMS 515 standardizes processes and procedures for the interagency use of Unmanned Aircraft Systems (UAS), including pilot inspections and approvals. This updated publication provides the aviation community with standards to ensure UAS are used safely, effectively, and efficiently in support of fire management goals and objectives.

References:

NWCG Standards for Fire Unmanned Aircraft Systems Operations, PMS 515

NWCG National Interagency Aviation Committee

ETC Bulletin 25-001: Retrofitted Hot/Cold Beverage Kits - 2025 Field Season

Date: April 16, 2025
Questions?  Please contact:
Equipment Technology Committee

Due to spout failures and the associated risk of burn injuries, manufacturers have retrofitted the Hot/Cold Beverage Kits using a heat-shrinking band to secure the black spout at the insertion site. The updated kits feature a fluorescent label on each full kit assembly for easy identification. Catering units are encouraged to confirm the clear heat-shrinking bands are intact around each spout before filling.

ETC Bulletin 24-001 regarding Hot/Cold Beverage Kits has been archived and replaced by ETC Bulletin 25-001 for the 2025 season.

References:

NWCG Alerts

ETC-EB-25-001 Retrofitted Hot/Cold Beverage Kits

NWCG Standards for Wildland Fire Chainsaw Operations, PMS 212, and Next Generation Position Task Book for Basic Faller Are Now Available

Date: April 14, 2025
Questions?  Please contact:
Hazard Tree and Tree Felling Subcommittee

The updated NWCG Standards for Wildland Fire Chainsaw Operations, PMS 212, and NWCG Position Task Book for Basic Faller (FAL3), PMS 311-19 are now available.

The NWCG Standards for Wildland Fire Chainsaw Operations, PMS 212 includes position standards designed to be used in conjunction with the Next Generation Position Task Book (Next Gen PTB). The Next Gen PTB for Basic Faller (FAL3) includes an evaluation guide with suggested rating elements to consider when assessing trainees.

References:

NWCG Standards For Wildland Fire Chainsaw Operations, PMS 212

NWCG Position Task Book for Basic Faller (FAL3), PMS 311-119

NWCG Basic Faller (FAL3)

RMC Memo 25-01: Summary of Updates to Safety Officer Positions

Date: April 9, 2025
Questions?  Please contact:
RMC Member Eric Fransted

The Risk Management Committee (RMC) serves as the position steward for all Safety Officer incident positions and continues to improve position standards, training, and naming conventions. The implementation of Complex Incident Management (CIM) required changes to position titles. RMC collaborated with the NWCG Incident Position Standards Committee (IPSC) to propose and implement these updates. 

References:

RMC Memo 25-01: Summary of Updates to Safety Officer Positions 

NWCG Position Catalog