Skip to main content

Surface Fire Behavior Worksheet

Table of Contents for This Page

  1. Available Tools and Resources
  2. Required Surface Model Inputs
  3. Surface Model Outputs
  4. Acceleration Effect on Rate of Spread

This comprehensive worksheet can be used with the surface fire behavior lookup tables, the Nomograms and Nomographs, as well as BehavePlus, and runs if you want a paper copy.

Consider using this as your briefing documentation by including a weather forecast narrative, your thoughts about recent fire activity, your sense of how accurate the predictions seem, and when you expect changes through the burn period.

Image
Worksheet for recording information collected and estimates produced when estimating surface fire behavior.

Available Tools and Resources

This section describes how to estimate expected surface fire behavior and provides several references tools used in the process:

  1. A Worksheet (above) designed to document a complete assessment for surface fire behavior and growth using either the lookup tables or the nomographs.
  2. EWS Tables for estimating Effective Windspeed from Slope and Midflame Windspeed. The Effective Windspeeds that result from these tables assumes that wind is blowing ± 30° from upslope. For other situations, manual vectoring using the EWS Table would be necessary.
  3. Surface Fire Behavior Lookup Tables for making estimates of surface fire spread and flame length. Note these assumptions:
    • 10-hr and 100-hr moisture values of 6% and 8% are used in the lookup tables.
    • The *20ft/FCST wind line is provided as a convenience, but only works with stated Wind Adjustment Factor (WAF) & no slope adjustments.
    • Backing & flanking columns are only rough estimates based on ½ and 1 mph windspeeds. Use the Flanking and Backing Fire Behavior Nomograph , or BehavePlus for more precise estimates.
  4. Instructions for Surface Fire Behavior Nomographs and Nomograms.
  5. Flanking and Backing Fire Behavior Nomograph for estimating rate of spread and flame length where fire is spreading more slowly on the flanks and at the back of the fire perimeter.

These tools can help you make expected surface fire behavior estimates. Consider the following:

Return to Top

Required Surface Model Inputs

Return to Top

Surface Model Outputs

  • Rate of Spread is useful in fireline tactical applications; identifying what is at risk in the burn period, escape route limitations.
  • Flame Length/Fireline Intensity is used generally in determining what tactics make sense during the peak burn period, interpreting safety zone concerns, and suggesting spotting potential.
  • Heat per Unit Area is available from nomograms and BehavePlus. Like the Energy Release Component, it may be helpful in suggesting burn duration and fire effects.

Return to Top

Acceleration Effect on Rate of Spread

Image
Fire Spread Acceleration. Fire spread accelerates over a period of time after initiation. The period of time varies based on the fuelbed.

Fire acceleration is defined as the rate of increase in fire spread rate. It affects the amount of time required for a fire spread rate to achieve the theoretical steady state spread rate given 1) its existing spread rate, and 2) constant environmental conditions.

Because initiating fires can take 20 minutes to over an hour to reach a steady spread rate, fire behavior and fire growth can be significantly reduced in the first burn period, and when beginning to spread in subsequent periods.

At this time, fire acceleration is implemented only in FARSITE, using the model developed for the Canadian Forest Fire Behavior Prediction System (Alexander et. al. 1992).

It is active by default, but can be turned off as a model input.

As implemented, inputs are segregated by type of Ignition (point vs. line source) and potentially by fuel type (grass, shrub, timber, slash, a default, or by fuel model). Grass fuels are expected to have more rapid acceleration rates (shorter time to reach equilibrium) than fuel types with larger woody material (slash, etc.).

Return to Top

NWCG Latest Announcements

NWCG Equipment Technology Committee Releases Safety Warning: 25-001 Non-specification fire shelters

Date: January 15, 2025
Contact: Equipment Technology Committee

The Equipment Technology Committee (ETC) has released Safety Warning: 25-001 Non-specification fire shelters. Non-specification fire shelters claiming to meet Forest Service (FS) fire shelter specification 5100-606 were first found in February of 2023. As of September 2024, non-specification shelters are again being advertised and sold on the open market.

This Safety Warning outlines details and recommended procedures to purchase FS specification shelters made with materials and components that meet performance criteria and toxicity testing requirements outlined in FS Specification 5100-606. 

For additional information on identifying non-specification shelters, please view ETC Safety Warning 23-01.

References:

ETC Safety Warning 25-001: Non-specification fire shelters

NWCG Equipment Technology Committee

ETC Safety Warning 23-01

Paul Gleason Lead by Example Awards

Date: January 14, 2025
Contact: Leadership Committee

The NWCG Leadership Committee has awarded the 2023 Paul Gleason “Lead By Example” awards to individuals in the categories of Initiative and Innovation, Mentoring and Teamwork, and Motivation and Vision, as well as a Lifetime Achievement Award.

Congratulations to the awardees:

  • Sam Bowen, Superintendent of the Mark Twain Veteran Crew with the U.S. Forest Service.
  • Greg Titus, Zone Fire Management Officer for the St. Marks National Wildlife Refuge with U.S. Fish and Wildlife Service.
  • Renae Crippen, Manager of the Blue Mountain Interagency Dispatch Center with the U.S. Forest Service.
  • Eric Carlson, Instructor with OMNA International.

References:

Paul Gleason Lead by Example Award

Wildland Fire Leadership Development Program

Interview with Paul Gleason

Updated NWCG Standards for Water Scooping Operations, PMS 518

Date: December 19, 2024
Contact: Water Scooper Operations Unit

The NWCG Standards for Water Scooping Operations, PMS 518 establishes the standards for dispatching, utilizing, and coordinating water scooping aircraft on interagency wildland fires. These standards should be used in conjunction with the NWCG Standards for Aerial Supervision (SAS), PMS 505, and any local, state, or geographic/regional water scooping plans.

References:

NWCG Standards for Water Scooping Operations, PMS 518

Updated NWCG Standards for Aerial Supervision, PMS 505

Date: December 19, 2024
Contact: Interagency Aerial Supervision Subcommittee

The Interagency Aerial Supervision Subcommittee has updated the NWCG Standards for Aerial Supervision, PMS 505. PMS 505 establishes standards for aerial supervision operations for national interagency wildland fire operations. 

References:

NWCG Standards for Aerial Supervision, PMS 505